Lipid Biology of Archaea
نویسندگان
چکیده
Today, there is increasing awareness of the multiple dynamic roles of lipids in cell life. Knowing how lipid molecular species are organized, interact with proteins, and change with environmental stress and metabolic state is crucial to understanding the membrane structure and the cellular functions. The present view of lipid biology arises from the availability of technologies able to detect even minor lipid components with short lifetimes. In the late 1990s, the technical innovation in mass spectrometry led to the development of " lipidomics " as an evolution of lipid biochemistry. Furthermore , progress in microscopy and the availability of many types of fluorescent probes, together with genetic engineering, presently offer the possibility to move quickly towards lipid systems biology. As a consequence, besides being able to analyze major and minor lipids of all structures and sizes by mass spectrometry and nuclear magnetic resonance, we can study topology, structural organization, and dynamics of lipids by microscopy and fluorescent probes in living cells and microbes. Lipids are among the taxonomic traits that can be used to clearly delineate the archaea from all other organisms. Archaeal phospholipids are built on glycero-1-phosphate and contain ether-linked isoprenoid chains, while bacterial and eukaryal lipids are constituted of fatty acids ester-linked to glycero-3-phosphate. The radical structural differences between lipids of archaea and bacteria or eukaryotes raise many questions about early evolution of cell membranes. This special issue contains selected papers dealing with archaeal phospholipid biosynthetic pathways, physical chemical properties and biotechnological applications of archaeal lipids, mass spectrometry lipid analyses and lipids of the archaeal viruses. An updated phylogenic analysis of enzymes involved in archaeal phospholipid biosynthetic pathways is presented by the group of D. Moreira. The biosynthetic pathways have also been analyzed from the experimental point of view in a study of the group of H. Hemmii, which has expressed 4 genes involved in the biosynthesis of archaeal phospholipids in E. coli resulting in the production of archaeal-type lipids in the bacterium; in the future such engineered E. coli cells may serve to test the properties of mixed membranes constituted of both archaeal and bacterial phospholipids. Lipid components of the membranes of Pyrococcus furiosus have been analyzed by MALDI/TOF-MS coupled to TLC in a study of S. Lobasso et al.; while lipids of uncultured methanogens present in geological samples have been detailed characterized by ESI-MS by M. Y. Yoshinaga et al. The ability of archaeal lipids to …
منابع مشابه
Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo
Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...
متن کاملSupernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo
Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...
متن کاملRole of membrane lipids in the first specific differentiation
1. Abstract. All the living organisms are classified into three domains (the newly proposed highest rank of classification of organisms). Escherichia coli and Bacillus subtilis are belonging to one of the domains, Bacteria. Works on the two bacteria made a great deal of contribution to construct modern microbiology, new concept of biochemistry and molecular biology. Compared with research histo...
متن کاملHeterogeneity of genome and proteome content in bacteria, archaea, and eukaryotes.
Our analysis compares bacteria, archaea, and eukaryota with respect to a wide assortment of genome and proteome properties. These properties include ribosomal protein gene distributions, chaperone protein contrasts, major variation of transcription/translation factors, gene encoding pathways of energy metabolism, and predicted protein expression levels. Significant differences within and betwee...
متن کاملPosttranslational protein modification in Archaea.
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012